Home > Neiro-evolucionāra pieeja meta modelēšanai un krājumu kontroles sistēmu optimizēšanai
Projekta vadītājs/a:
,
Academic degree and current position in TSI: assistant professor, researcher at the research cluster “Data Analytics and Artificial Intelligence
Previous experience: 4 years of lecturing and research at the Transport and Telecommunication Institute (TSI)
Membership: Reviewer of the Hawaii International Conference on System Sciences (HICSS) and Transport Journal. Member of the scientific committee of the International Scientific Conference “Transbaltica 2021”. Member of a working group European Transport Research Review (ECTRI), thematic group “freight & logistics”.
Academic experience: More than 13 publications indexed by SCOPUS and WoS. Author of such courses as “Risk management in supply chains”, “Modeling Logistic and transport processes”, “Logistic systems and chains”.
Teaching at post- and graduate level: Risk management in supply chains (MSc in Transport and Logistics), Modeling Logistic and transport processes (MSc in Transport and Logistics), Logistic systems and chains (MSc in Transport and Logistics).
Participation in projects: participated as a researcher in several European projects including ALLIANCE (ID: 692426) and ePIcenter (ID: 861584).
Research Interests: Supply chain management, applied machine learning, simulation modelling, operations research and metaheuristics.
Supervised Doctoral, Master and Bachelor Theses (number): 1 master student completed master’s degree under my supervision.
Awards: Young Researcher Award was received at the 20th International Multi-Conference Reliability and Statistics in Transportation and Communication, 2020, Riga, Latvia. Awarded paper: “Neuroevolutionary approach to metamodel-based optimization in production and logistics”
Projekta tips: Metodiskais
Galvenais izaicinājums:
Ņemot vērā steidzamo rūpniecisko vajadzību metamodelēšanas automatizācijā un nesenos neiroevolūcijas pieeju panākumus neironu arhitektūras meklēšanā un hiperparametru optimizācijā, tā mērķis ir pārbaudīt mākslīgā neironu tīkla un ģenētiskā algoritma kombinācijas iespējamību un efektivitāti krājumu kontroles sistēmu automatizētai metamodelēšanai. Izstrādātais ietvars ir balstīts uz visizcilāko modernāko praksi, un tas parāda stabilas skaitļošanas iespējas klasiskajā metamodelēšanā, kas formulēts kā regresijas problēma. Turklāt reālās situācijas izpētē tiek apspriesta iespēja izmantot piedāvāto sistēmu optimālu kontroles parametru iegūšanai.
Finansējums: VIAA stipendija doktora studijām, lēmums N.1. -50,3/3889, lēmums N.1. -50,3/2978.
DA&AI rīki:
Rezultāti (publikācijas, ziņojumi, apliecinājumi utt.)