LV EN

LLM BALSTĪTAS SQL ĢENERĒŠANAS PIEEJU SALĪDZINOŠĀ ANALĪZE

Maksim Ilin

ANOTĀCIJAS

Lielo valodu modeļu straujā attīstība ir pavērusi iespējas pārstrukturēt programmatūras izstrādes procesus kopumā, kā arī tādos gadījumos kā dabiskās valodas konvertēšana SQL vaicājumos. Šī pētījuma mērķis ir eksperimentāli novērtēt četru uz LLM balstītu metožu ietekmi uz SQL ģenerēšanas efektivitāti un kvalitāti. Novērtēšana tiek veikta, pamatojoties uz šādiem rādītājiem: pareizība, pilnīgums un konsekvence. Izpētītās uz LLM balstītās SQL ģenerēšanas metodes ietver īpašus LLM, kas pielāgoti SQL koda ģenerēšanai, piemēram, SQL kodētāju ietvarus SQL koda ģenerēšanai (Vanna.ai, 2023; Llamaindex, 2023) un vairāku aģentu sadarbības tīklus valodas pārveidošanai SQL.
Pētījumā tiek izmantota literatūras apskata gadījumu izpēte un simulācijas. Tas piedāvā visaptverošu pārskatu par LLM vadītās SQL paaudzes sasniegumiem, kas ietver koncepcijas, tehnoloģijas, metodoloģijas, stiprās puses, ierobežojumus un ētiskus apsvērumus.
Šis pētījums veiksmīgi novērš plaisu starp teorētiskajiem pamatiem un AI papildināto pieeju praktisko pielietojumu, vienlaikus veicinot uz LLM balstītas SQL ģenerēšanas integrāciju automatizētos programmatūras izstrādes procesos.
Autors: Maksim Ilin
Līmenis: Maģistrs
Gads: 2024
Darba valoda: Angļu
Vadītājs: Dr. sc. ing., Dmitry Pavlyuk
Fakultāte: Inženierzinātņu fakultāte
Studiju programma: Datorzinātnes

ATSLĒGVĀRDI

LIELO VALODU MODEĻI, SQL ĢENERĒŠANA, DABISKĀS VALODAS APSTRĀDE, PROGRAMMATŪRAS IZSTRĀDES AUTOMATIZĀCIJA, AĢENTI