LV EN

Boosting algoritmi kredītkaršu krāpšanas atklāšanai dažādās datu kopās

Justs Vīdušs

ANOTĀCIJAS

Manuāla pārskatīšana un noteikumu bāzētas sistēmas, kā arī datu ieguves tehnikas, piemēram, klasterēšanas un klasifikācijas algoritmi, ir būtiski kredītkaršu krāpšanas atklāšanai, jo tie palīdz identificēt krāpnieciskas transakcijas. Neskatoties uz apmācības datu vākšanas grūtībām, nesen ir pieejami vairāk dati, tomēr pilnīga pašreizējo mašīnmācīšanās pieeju salīdzināšana vēl nav veikta. Algoritmi, piemēram, XGBoost, AdaBoost un Gradient Boosting Machine, bieži pārspēj vecākas metodes. Šajā pētījumā tiek salīdzināti palielināšanas algoritmi ar tradicionālām pieejām, izmantojot trīs dažādas kredītkaršu transakciju datu kopas: sintētiskas, līdzsvarotas ar 50% krāpnieciskām transakcijām un ļoti nesabalansētas ar tikai 0,17% krāpnieciskām transakcijām. Īstajās transakciju datu kopās bija 28 anonimizēti parametri, piemēram, laiks un vieta. Katrs algoritms tika novērtēts pēc F1 score, accuracy, precision, un recall. Šis pētījums sniedz ieteikumus par algoritmu izmantošanu reālās situācijās, sniedzot vērtīgas atziņas nākotnes pētījumiem un praktiskai izmantošanai kredītkaršu krāpšanas atklāšanā.
Autors: Justs Vīdušs
Līmenis: Maģistrs
Gads: 2024
Darba valoda: Angļu
Vadītājs: Dr. sc. ing., Nadežda Spiridovska
Fakultāte: Inženierzinātņu fakultāte
Studiju programma: Datorzinātnes

ATSLĒGVĀRDI

MAŠĪNMĀCĪŠANĀS, BOOSTING ALGORITMI, KRĀPŠANAS NOTEIKŠANA