LV EN

LĪMENIS

PROGRAMMA

FAKULTĀTE

GADS

VALODA

ATSLĒGVĀRDI

Mašīniskās slīpēšanas algoritmu veiktspējas uzlabošana, samazinot datu kopas dimensiju, izmantojot šūnu automātus

Nozīmīgs izaicinājums mašīnmācīšanā ir darbs ar lieldimensiju datiem. Sarežģītība, kas pazīstama kā "dimensijas lāsts", izraisa mašīnmācīšanās algoritmu veiktspējas pasliktināšanos, palielinoties dimensijai un datu kopas lielumam. Šūnu automāti ir dinamiska diskrēta skaitļošanas sistēma ar matemātiskām funkcijām, kas pazīstamas kā noteikumi, kuri rada sarežģītu globālu uzvedību. Mēs izmantojām viendimensiju elementāros šūnu automātus kā rīku datu kopas lieluma noteikšanai. Modeļa mainīgie tika atlasīti sākotnējā stāvokļa vektora ģenerēšanai un tā tālākai pārveidošanai formātā, kas ir piemērots šūnu automāta noteikumu piemērošanai, ko šūnu automātu teorijā pazīst kā konfigurāciju. Pēc tam modelis tika iterēts, izmantojot visus iespējamos šūnu automāta noteikumus, un tika piemērotas dažādas epohālās variācijas. Samazinātās datu kopas modeļa veiktspēja tika salīdzināta ar sākotnējās datu kopas etalonrezultātiem pēc standarta dimensiju samazināšanas tehnikas izmantošanas. Tika secināts, ka piemērotos šūnu automātu noteikumus var izmantot kā alternatīvas metodes datu kopas izmēru samazināšanai, nepasliktinot modeļa veiktspēju.

Autors: Alexey Kuchvalskiy

Vadītājs: Dmitry Pavlyuk

Līmenis: Maģistrs

Gads: 2024

Darba valoda: Angļu

Studiju programma: Datorzinātnes

Vairāk...


Izgūšanas-papildināšanas ģenerēšanas sistēmu uzlabošanas stratēģijas

Šis darbs sistemātiski pēta izgūšanas-papildināšanas ģenerēšanas sistēmu (RAG) sistēmu uzlabošanu lielo valodu modeļos, uzsverot izguves parametru optimizāciju un ģenerēšanas precizitāti. Tiek pētīta RAG sistēmu optimālās konfigurācijas, tostarp informācijas daļu lielumu un pārklāšanās procentus, top-k atlasi, vaicājumu transformācijas, dažādas izguves metodes, dažādus lielos valodu modeļus, proti, GPT-3.5-Turbo un GPT-4, atklājot, ka informācijas lielums visbiežāk ir 500 marķieri. piedāvā vislabāko veiktspēju. Vektoru meklēšana, izmantojot kosinusu līdzību, kļūst par visefektīvāko izguves metodi, ievērojami uzlabojot gan konteksta precizitāti, gan dažādu uzdevumu un zināšanu bāzu atsaukšanu. Eksperimentēšana CRUD-RAG ietvaros parāda tās pielietojamību dažādos uzdevumos, sākot no satura izveides līdz zināšanu pilnveidošanai. Atklājumi liecina, ka izguves iestatījumu uzlabojumi var ievērojami uzlabot RAG sistēmu veiktspēju, padarot tās efektīvākas un pielāgojamākas sarežģītiem informācijas sintēzes un izguves uzdevumiem. Šie rezultāti apstiprina sistemātisku uzlabojumu potenciālu, lai uzlabotu mākslīgā intelekta vadītus valodas modeļus praktiskos lietojumos, sniedzot nozīmīgu ieskatu un praktiskas pieejas RAG sistēmu izpētes ainavai.

Autors: Sigita Lapiņa

Vadītājs: Dmitry Pavlyuk

Līmenis: Maģistrs

Gads: 2024

Darba valoda: Angļu

Studiju programma: Datorzinātnes

Vairāk...

Table View
Text View