LV EN

LĪMENIS

PROGRAMMA

FAKULTĀTE

GADS

VALODA

Mašīnmācīšanās izmantošana lēmumu atbalsta sistēmā

Šī darba mērķis ir uzlabot gaidīšanas laiku prognozēšanas precizitāti esošajā rindas vadības sistēmā, izmantojot mašīnmācīšanos. Tika analizēti klienta sniegtie dati un modeļi tika apmācīti, izmantojot dažādus mašīnmācīšanās algoritmus. Tika apkopoti modeļu veiktspējas rādītāji un izvēlēts labākais. Papildus tika izstrādāta programmatūra un datubāze, kas ļauj kontrolēt apmācības procesu un novērtēt modeļu kvalitāti. Programmatūras kvalitāte tika novērtēta, izmantojot nozares standartmetodoloģijas, un tika pārbaudīta.

Autors: Jevgēnijs Nikolajevs

Vadītājs: Jeļena Kijonoka

Līmenis: Bakalaurs

Gads: 2024

Darba valoda: Latviešu

Studiju programma: Datorzinātnes

Vairāk...


Ar pipeline saistītu artefaktu un bojājumu atpazīšana IHC krāsojumos izmanotojot KNT kā pirmapstrādes posms patoloģiskajai analīzei

Šajā darbā tiek piedāvāts automatizēts risinājums artefaktu un bojājumu segmentācijai biomedicīnas attēlos, izmantojot mašīnmācīšanās algoritmus. Izstrādes process ietver datu pirmapstrādi, marķējuma klasifikāciju, izmantojot klasterizācijas algoritmus, un segmentācijas modeli. Segmentēšanai tiek izmantotas tādas KNT arhitektūras kā YOLO un U-NET, bet klasterizācijai tiek novērtēti K-Means un DBSC algoritmi. Rezultāti ietver datu pirmapstrādes priekšnoteikumu kopumu, klasterizācijas algoritma testēšanu un rezultātu analīzi, segmentācijas modeli un ieteikumus turpmākai attīstībai.

Autors: Taisija Kožarina

Vadītājs: Jeļena Kijonoka

Līmenis: Bakalaurs

Gads: 2024

Darba valoda: Angļu

Studiju programma: Datorzinātnes

Vairāk...


Uz mašīnmācīšanos balstīta neobjektivitātes novēršana nākotnes atlasē, kas balstīta uz mākslīgo intelektu

Mūsdienu cilvēkresursu vidē mākslīgā intelekta integrācija rada gan iespējas, gan izaicinājumus, jo īpaši personāla atlases jomā, kas aptver visus procesa posmus, sākot no kandidātu meklēšanas līdz gala atlasei. Tomēr šī integrācija nav bez problēmām. Neobjektīvi dati, kas izriet no vēsturiskiem datiem vai sabiedrības aizspriedumiem, var būt nozīmīgs šķērslis, kas var izraisīt diskriminējošu praksi. Pētījumā "Uz mašīnmācīšanos balstīta neobjektivitātes novēršana nākotnes atlasē, kas balstīta uz mākslīgo intelektu" mērķis ir analizēt esošas novirzes gan no cilvēka, gan no mākslīgā intelekta perspektīvas personāla atlases procesā. Tā ietvaros tiek meklētas atbildes uz šādiem pētījuma jautājumiem: kādas ir esošās neobjektivitātes personāla atlases procesā, gan tiešas, gan netiešas, un kā var efektīvi mazināt vai novērst novirzes personāla atlases procesā, izmantojot modelēšanas metodes nākotnes atlases sistēmās, kas balstītas uz mākslīgo intelektu. Izmantojot uz datiem balstītu pieeju un mašīnmācīšanās modeļu pielāgošanu, tiks atklāts, kāda veida novirzes pastāv atlases procesā un kā tās mazināt.

Autors: Ērika Todjēre

Vadītājs: Jeļena Kijonoka

Līmenis: Maģistrs

Gads: 2024

Darba valoda: Angļu

Studiju programma: Datorzinātnes

Vairāk...

Table View
Text View