LV EN

DEGREE

PROGRAMME

FACULTY

YEAR

LANGUAGE

Title Supervisor Degree
Master 2024
Faculty: Engineering Faculty

Study programme: Computer Sciences

More...

Boosting Algorithms for Credit Card Fraud Detection Across Varied Datasets

Manual reviews and rule-based systems, as well as data mining techniques such as clustering and classification algorithms, are crucial for identifying credit card fraud since they help identify fraudulent transactions. Despite obstacles in gathering training data, more data has lately been available, however, a complete comparison of current machine learning approaches has yet to be conducted. Algorithms like XGBoost, AdaBoost, and Gradient Boosting Machine frequently outperform older approaches. This study compares boosting algorithms to traditional approaches using three different credit card transaction datasets: synthetic, balanced with 50% fraudulent transactions, and very unbalanced with only 0.17% fraudulent transactions. The genuine transaction datasets contained 28 anonymized parameters such as time and location. Each method was evaluated using the F1 score, accuracy, precision, and recall. This study makes recommendations on which algorithms to use in real-world scenarios, giving important insights for future research and practical use in credit card fraud detection.

Author: Justs Vīdušs

Supervisor: Nadežda Spiridovska

Degree: Master

Year: 2024

Work Language: English

Study programme: Computer Sciences

More...

Table View
Text View