LV EN

DEGREE

PROGRAMME

FACULTY

YEAR

LANGUAGE

KEYWORDS

Optimization of Turbofan Engine Performance through Blade Profile Modification

This thesis reports detailed research performed to optimize the geometries of blade rows in turbofan engines through analysis with computational fluid dynamics. The study was conducted systematically by employing theoretical analysis, along with numerical computation used to evaluate the aerodynamic performance of two different blade types. The methodology consisted of the design of blade geometries in SolidWorks, mesh generation using structured and unstructured elements, and CFD simulations on ANSYS Fluent with a focus on cascade analysis. The study commenced with the development of two designs below: Blade Design 1 having a height of 1300 mm, chord length of 294 mm at the base, and 700 mm at a height of 750 mm; Blade Design 2 at a similar height, differing only in leading edge diameters and chord lengths at different cross-sections. This enables detailed meshing such that near-wall regions and critical flow features are resolved with adequate resolution. Using a pressure-based solver, the CFD simulation was performed using the k-ω SST turbulence model, which is proper for capturing near-wall effects and handling adverse pressure gradients. Inlet velocities were considered between 1 and 40 m/s, thus analyzing performance under different operating conditions.

Author: Ajiksun Kumaradhas

Supervisor: Adham Ahmed Awad Elsayed Elmenshawy

Degree: Bachelor

Year: 2024

Work Language: English

Study programme: Aviation Engineering

More...


Failure Analysis and Enhancements of Cessna-172 Nose Landing Gear Fork

Landing gear provides crucial support for aircraft while on ground. It is fastened to the main structural parts of the plane. The nose landing gear transfers all ground stresses to the aircraft structure, while the aircraft is on ground. Standard airplanes have main gears and the nose gear when taxiing on the ground the nose wheel is essential for both landing safely and guiding the plane. Main landing gear is to facilitate the safe touchdown of the aircraft. When combined, the main landing gear and the nose landing gear allow for landing smooth and jerk-free. The whole weight of the aircraft is supported by the undercarriage during taxiing and landing. Using the modelling program, a design and precise geometry of the existing Cessna 172 nose landing gear fork was created as well as for the proposed model of the nose landing gear. Comparison of four different materials for nose landing gear fork structures and evaluate the equivalent stress, strain and deflection was done. There is comparison of the nose landing gear fork structure with existing and proposed model. Compared to all the cases the titanium alloy material receives the lesser and nearer to the deformation of the steel.

Author: Jithin Thundiyil Appachen

Supervisor: Iyad Alomar

Degree: Bachelor

Year: 2024

Work Language: English

Study programme: Aviation Engineering

More...

Table View
Text View