LV EN

DEGREE

PROGRAMME

FACULTY

YEAR

LANGUAGE

KEYWORDS

Research on effective finding of network anomalies in Intrusion Detection Systems using ML/DL methods

In this paper, the process of testing datasets and ML/DL methods using the Weka platform in order to obtain results of their effectiveness and how high the accuracy of detecting network anomalies they provide is described. During the experiment, many ML/DL algorithms and the most common datasets (KDD99, NSL-KDD, UNSW-NB15) were analyzed, as a result of which it was revealed that the best result of detection accuracy and time required on the experiment was produced by the NSL-KDD dataset.

Author: Dmitrijs Bulaks

Supervisor: Jeļena Baranova

Degree: Bachelor

Year: 2024

Work Language: English

Table View
Text View