LV EN

DEGREE

PROGRAMME

FACULTY

YEAR

LANGUAGE

KEYWORDS

Optimization of Turbofan Engine Performance through Blade Profile Modification

This thesis reports detailed research performed to optimize the geometries of blade rows in turbofan engines through analysis with computational fluid dynamics. The study was conducted systematically by employing theoretical analysis, along with numerical computation used to evaluate the aerodynamic performance of two different blade types. The methodology consisted of the design of blade geometries in SolidWorks, mesh generation using structured and unstructured elements, and CFD simulations on ANSYS Fluent with a focus on cascade analysis. The study commenced with the development of two designs below: Blade Design 1 having a height of 1300 mm, chord length of 294 mm at the base, and 700 mm at a height of 750 mm; Blade Design 2 at a similar height, differing only in leading edge diameters and chord lengths at different cross-sections. This enables detailed meshing such that near-wall regions and critical flow features are resolved with adequate resolution. Using a pressure-based solver, the CFD simulation was performed using the k-ω SST turbulence model, which is proper for capturing near-wall effects and handling adverse pressure gradients. Inlet velocities were considered between 1 and 40 m/s, thus analyzing performance under different operating conditions.

Author: Ajiksun Kumaradhas

Supervisor: Adham Ahmed Awad Elsayed Elmenshawy

Degree: Bachelor

Year: 2024

Work Language: English

Study programme: Aviation Engineering

More...

Table View
Text View