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The problem of optimal planning for a design office comprising PERT-COST network projects with different priorities is 

solved. At the upper level – the design office level – the problem centres on reassigning the total budget in order to optimize the 
combination of projects' reliabilities and priority values. At the second level – the project level – the problem's solution boils down 
to optimal budget reassignment among the project's activities subject to the least permissible project's reliability value. The solution 
is obtained by a combination of heuristic and Monte-Carlo methods. 
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1. Introduction 
 

This paper is actually a continuation of paper [6] where the problem centres on determining  
the minimal budget value assigned to a PERT-COST project as well as local budget values assigned to  
the project's activities. In the paper under consideration a hierarchical optimal planning model comprising 
two levels, is outlined. Only planning techniques are considered. Unlike papers [2–5], we will implement 
at each hierarchical level, Monte-Carlo methods. 
 
2. Notation 
 
Let us introduce the following terms: 
C  - total design office budget (pregiven); 

( )ANGk ,  - the k -th stochastic network project (graph) of PERT-COST type, nk ,...,2,1= ; 
n  - the number of projects; 

kD  - the due date of the k -th project (pregiven); 

kη  - priority value of the k -th project (pregiven); note that if ( )ANGk ,
1

 is of higher 

importance than ( )ANGk ,
2

, relation 
21 kk ηη >  holds; 

kC  - budget assigned to project ( )ANGk ,  (to be optimized); 
∗
kp  - the minimal acceptable project’s ( )ANGk , reliability (pregiven); 

kT  - random duration of project ( )ANGk , ; 
( )kji,  - activity entering ( )ANGk , ; 

( )kjic ,  - budget assigned to ( )kji,  (to be determined and optimized); 

( )kjit ,  - random duration of ( )kji, ; 

( )kjic ,min  - the minimal possible budget to operate activity ( )kji,  (pregiven); 

( )kjic ,max  - the maximal possible budget to operate activity ( )kji,  (pregiven); 

( )kk CR  - the maximal reliability value { }kkk CTT <Pr  on the basis of assigned budget kC ; 

X  - search point vector; 

kCδ  - search step value for the local budget kC ; 

dcδ  - search step value for the d -th coordinate, kMd ,...,2,1= ; 
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kM  - the dimension of the Euclidean search space (number of activities ( )kji, ); 
Δ  - the pregiven minimal accuracy of the local search process; 
γ  - a random kM -dimensional value uniformly distributed on a unity simplex; 

( ) ( ){ k jicjitp ,,, - thep.d.f. of ( )kjit ,  on condition that budget ( )kjic ,  is assigned to ( )kji, . Note 

that { }
( ){ }

( )
( ){ } ⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

=≤= ∑
k

k ji
kkkkkjick CjicCTTCR

,,
,,Prmax  subject to 

( )
( ){ }
∑ =

kji
kk Cjic

,
, , ( ) ( ) ( )kkk jicjicjic ,,, maxmin ≤≤ , ( ) ( )ANGji kk ,, ⊂ , 

holds; 
1Y  - the pregiven number of consecutive unsuccessful random steps undertaken from  

a routine initial search point; 
2Y  - the pregiven number of simulating initial search points. 

Note, in conclusion, that similar to [5–6], for each activity ( )kji,  budget ( )kjic ,  assigned to that 

activity enters parametrically in the corresponding p.d.f. ( ) ( ){ }kk jicjitp ,,, . 
 
3. The General Problem 
 
The problem centres on determining: 

• budget values ∗
kC , nk ,...,2,1= , assigned to all projects ( )ANGk , , 

• local budget values ( )kjic ,∗  assigned to activities ( ) ( )ANGji kk ,, ⊂ , 
– in order to maximize objective 

( )∑
=

∗ ⋅=
n

k
kkk CRW

1
max η  (1)

subject to 

CC
n

k
k =∑

=

∗

1
, (2) 

( ) ∗∗ ≥ kkk pCR , (3) 

( ) ( ) ( )kkk jicjicjic ,,, maxmin ≤≤ ∗ . (4) 
Problem (1–4) is a sophisticated and complicated problem which can be solved by a combination of 
heuristic and simulative methods. 
 
4. Auxiliary Problem I 
 

In [6] an auxiliary Problem I is formulated. 
Given ( )ANGk , , kD , ( ) ( )ANGji kk ,, ⊂ , ( )kjic ,min , ( )kjic ,max , ( ) ( ){ }kk jicjitp ,,,  and kC , 

determine local budget values ( )kjic ,∗  assigned to all activities ( ) ( )ANGji kk ,, ⊂ , in order to 
maximize the project’s reliability, i.e., determine 

( )
( )

( )
( ){ } ⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

=≤= ∑
k

k ji
kkkkkjick CjicCDTCR

,,
,,Prmax  (5)

subject to (2, 4). 
Two different algorithms of solving Problem I can be used, namely: 

• the algorithm based on heuristic procedures; 
• the Monte-Carlo algorithm. 

In order to simplify the algorithms and taking into account that both algorithms refer to single 
projects, we will omit further on index k. 
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5. Heuristic algorithm (Algorithm I) 
 

The steps of the well-known classical heuristic algorithm [2–4] are as follows: 
Step 1. By any means reassign C  among all activities ( )ji,  entering ( )ANG ,  subject to (2, 4). Note 

that C  exceeds ( )
( ){ }
∑

ji
jic

,
min , , otherwise project’s reliability R  equals zero. Thus, it is 

always possible to undertake a feasible, non-optimal distribution. In case ( )
( ){ }
∑≥

ji
jicC

,
max ,  

values ( ) ( )jicjicopt ,, max= . 
Step 2. Implement ( )jic ,  obtained at Step 1 into the given p.d.f. ( ) ( ){ }jicjitp ,,,  for all activities 

( ) ( )ANGji ,, ⊂ . 
Step 3. Simulate values ( )jit ,  with p.d.f. obtained at Step 2, ( ) ( )ANGji ,, ⊂ . 
Step 4. Calculate the critical path length of the project ( ){ }( )jitGLcr ,, . 
Step 5. Determine all activities ( ) ( )ANGji ,, ⊂ , which belong to the critical path. 
Step 6. Repeat Steps 2–5 N  times in order to obtain a representative statistics. 
 
Step 7. 

Calculate ratio ( )qRN
N =′ , where N′  is the number of simulated values 

( ) ( ){ }( )jitANGLcr ,,,  which do not exceed the due date D , and q  is the number of the 
current iteration. 

 
Step 8. Compare two adjacent ratios ( )qR  and ( )1−qR . If both relations 
 ( ) ( )1−> qq RR , (6) 
 ( ) ( )

( ) Δ≥
−

−

−

1

1

q

qq

R
RR

 (7) 

 hold (value Δ  is externally given), apply the next step. If relation (6) does not hold, go to Step 
14, with values ( )jic ,  obtained at the ( )1−q -th iteration. If relation (6) holds but (7) do not 
hold, proceed to Step 14 with ( )jic ,  obtained at the q -th iteration. 

Step 9. Calculate frequency ( )jip ,  of each activity ( )ji,  to be on the critical path (using Step5 for 
N  simulations). 

Step 10. Reschedule all the activities in a descending order of values 
 ( ) ( ) ( )( )jicjijipji ,,,,, μν ⋅= , (8) 
 where μ  is the average value for the p.d.f. ( ) ( ){ }jicjitp ,,, . 

For activities with ( ) 0, =jip  reschedule those activities in descending order of their average 
values ( )( )jicji ,,,μ . 

Step 11. Determine activity ( )ξξ ji , with the highest priority for which relation 
 ( ) ( ) 0,,max1 >−= ξξξξ jicjicZ  (9) 
 holds. Activity ( )ξξ ji ,  is placed at the beginning of the sequence and refers usually to critical 

activities. 
Step 12. Determine activity ( )ηη ji ,  with the lowest priority for which relation 
 ( ) ( ) 0,, min2 >−= ηηηη jicjicZ  (10) 
 holds. Activity ( )ηη ji ,  is placed at the end of the sequence and is usually a non-critical 

activity, which practically has no influence on the project’s reliability. 
Step 13. Reassign cost value ( )21 ,min ZZZ =  from activity ( )ηη ji ,  to activity ( )ξξ ji , . Return to 

Step2. 
Step 14. The algorithm terminates. Values ( )jic ,  obtained after decision-making at Step 7 determine 

the maximal project’s reliability ( )CR . 
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Extensive experimentation shows [2–4, 7] that the outlined above Algorithm I is less efficient than 
the Monte-Carlo algorithm, especially in cases of relatively small amounts of projects entering the design 
office. Therefore for both hierarchical levels – the project and the company level – we will use the Monte-
Carlo approach. 
 
6. Monte-Carlo algorithm (Algorithm II) 

 
The algorithm’s novel step-wise structure is as follows: 

Step 1. Generate by means of Monte-Carlo method [1] M  independent random varieties with p.d.f. 
( ) xexp −= ; let them be Mααα ,...,, 21 . Here M  is the number of activities ( )ji,  entering 

project ( )ANG , . 
 
Step 2. Calculate random varieties Mββ ,...,1 , where 

∑
=

= M

d
d

d
d

1
α

αβ . It can be proven that vector 

( )Mβββ ,...,1=∗  is distributed uniformly on simplex ∑
=

=
M

d
d

1
1β , 10 << dβ , 

Md ,...,2,1= . 

Step 3. Repeat Steps 1→ 2 to obtain another independent vector ∗∗β . 
 
Step 4. Calculate vector ∗∗∗ −= ββγ . The latter satisfies ∑

=

=
M

d
d

1
0γ , 11 <<− dγ , Md ,...,2,1= . 

Step 5. Enumerate all activities ( )ji,  entering the project ( )ANG , , by different ordinal numbers 
from 1 to M . Denote the d -th activity by da , it’s corresponding minimal and maximal local 

budgets by dcmin  and dcmax , and the budget to be assigned and determined in the course of 

solving the general problem – by dc , Md ,...,2,1= . 
 
Step 6. Simulate by means of Monte-Carlo the initial search point 0

dc  

 
ddd bcc += min

0 , (11) 

 where 
 ( ) Θ⋅−= ∗

dddd ccb βminmax , (12) 

 

( )[ ]∑

∑

=

∗

=

−

−
=Θ M

d
ddd

M

d
d

cc

cC

1
minmax

1
min

β
. (13) 

Step 7. In case when for some activities da dd cc max
0 > , set dd cc max

0 = . 

Step 8. Similarly to Step 10 of Algorithm I, reschedule all activities in the descending order of their 
contribution to the project’s reliability. 

 
Step 9. Calculate ∑

=

=′
M

d
dcC

1

0 . If CC >′ , calculate the difference CC −′  and diminish the budget of 

non-critical activities in order to equalize the summarized decrease to that difference. The 
process of diminishing the budget starts from below, i.e., from the least important activities. 
In case CC <′  the calculated difference CC ′−  has to be spent on increasing the budget of 
critical activities, starting from above according to the previously rescheduled activity 
sequence. 
Denote by 0

dc  the finally obtained budget levels, Md ,...,2,1= . 
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Step 10. Solve the classical simulation problem to simulate reliability value 
( ) ( ) ( ) ( ){ }jicjicjicCDTCR cr ,,,,,,Pr maxmin<= . The problem can be solved by 

determining p.d.f. ( ) ( ){ }00 ,,, dcjicjitp ↔  for all activities entering the project and later on, 
by simulating values ( )jit , , ( ) ( )ANGji ,, ⊂ . Afterwards, by repeating Step 10 numerous 
times (similar to Steps 2–7 of Algorithm I), reliability value ( )CR  is determined. Call it 

henceforth value 0R , i.e., the initial search point’s reliability.
Step 11. Undertake a local search from the initial point
 ( ) ( )10 XXX ⇒Δ+ , (14) 
 where XΔ  is the random search increment. 

Here ( ) 00 cX =  and dcX δγ ⋅=Δ , where dcδ  is the d -th coordinate’s search step and dγ  
has been obtained at Step 4. 

Step 12. In the course of carrying out the local random search, we will use the optimum trial random 
search algorithm [1]. Step 12 centres on considering a sequence of Q  independent 

M -dimensional increments qXΔ , Qq ,...,2,1= , with q  vectors ( )qMqqq γγγγ ,...,, 21=  

satisfying ∑
=

=
M

d
qd

1
0γ . After implementing each q -th increment a correction of coordinate 

values is undertaken as follows: if ( )
dd cc max

1 >  set ( )
dd cc max

1 =  and in case ( )
dd cc min

1 <  set 
( )

dd cc min
1 = . 

Later on an additional correction for each q -th increment qXΔ  has to be undertaken similar 
to that described at Step 9. 

Step 13. At each search point ( )1
qX , Qq ,...,2,1= , Step 10 is applied to calculate the project’s 

reliability ( )( )1
qXR . Take the search point with the maximal value ( )( )1

ξXR , Q≤≤ξ1 . If 
( )( )1
ξXR  exceeds ( )0XR , point ( )1

ξX  is chosen as the new initial search point, i.e., 
( ) ( )01 XX ⇒ξ . Go to the next step. 

If ( )( )1
ξXR  does not exceed ( )0XR  the search terminates at point 0X . 

Note that in the course of undertaking a local random search vector γ  is always renewed by 
operating Steps 1–4. 

Step 14. Check relation
 ( )( ) ( )( )

( )( ) Δ≥
−

0

01

XR
XRXR ξ . (15) 

 If (15) holds, return to Step 11. Otherwise apply the next step.
Step 15. Store the results of the local search process [vector dc , ( )( )1XR ] in a special array. 
Step 16. Counter f  of the number of simulating initial points 0X  works, 1: += ff . 
Step 17. If Yf ≤ , return to Step 1. Otherwise apply the next step. 
Step 18. Take the maximal project’s reliability of the Y  initial search points stored in a special array 

(see Step 15). The corresponding reliability ( )CR  together with the optimal vector dc , is the 
solution of Problem I. 

 
7. Auxiliary Problem II 
 

The problem is as follows: 
For a single PERT-COST project ( )ANG ,  with given values ( )jic ,min , ( )jic ,max , 

( ) ( )ANGji ,, ⊂  and ∗p , determine the minimal budget C  assigned to that project, together with values 
( )jic , , which enables 
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( ) ∗≥ pCR . (16) 
Thus, the problem's formalization is as follows: 

Cmin  (17) 
subject to  
( ) { } ∗≥<= pCDTCR Pr  (18) 

and (2, 4). 
The enlarged step-wise algorithm to solve Problem II is as follows: 

Step 1. Set ( )
( ){ }
∑=

ji
jicC

,
min , . 

Step 2. Set counter 1:=h . 
Step 3. Calculate ChCC δ⋅+=: . 
Step 4. Solve auxiliary Problem I to obtain ( )CR . 
 
Step 5. 

Compare ( )GCR  and ∗p . If ( ) ∗≥ pCR G  holds, proceed to Step 7. Otherwise apply the next 
step. 

Step 6. Counter h  works, 1: += hh . Return to Step 3. 
Step 7. The algorithm terminates with the minimal budget value obtained at Step 3 and values ( )jic ,  

determined by solving auxiliary Problem I at Step 4. 
Note that value C  obtained at Step 1 enables solving Problem B at Step 4. However, the 

corresponding initial reliability value ( )CR  will be extremely small. 

 
8. The General Problem (GP) 
 

The general idea of solving GP (1–4) is based on implementing the Monte-Carlo method and is 
very similar to the algorithm outlined in Section 6. The enlarged algorithm's step-wise structure is as 
follows: 
Step 0. Given (see Notation): 

• total budget value C ; 
• local projects ( )ANGk , , nk ,...,2,1= ; 
• priority values kη , nk ,...,2,1= ; 
• due date values kD , nk ,...,2,1= ; 

• values ( )kjic ,min  and ( )kjic ,max , nk ,...,2,1= , ( ) ( )ANGji kk ,, ⊂ ; 

• minimal projects' reliability values ∗
kp . 

Step 1. Solve separately for each project ( )ANGk ,  auxiliary Problem II. Determine the minimal 
budget values by kC ′ , nk ,...,2,1= . Thus, 

 ( )kk CC min=′  (19) 
 subject to 
 ( ) ∗≥ kk pCR . (20) 
Step 2. Check inequality 
 

∑
=

′≥
n

k
kCC

1
. (21) 

 If the inequality does not hold, the general problem has no solution. Otherwise calculate 

∑
=

′−=Δ
n

k
kCCC

1
. 

Step 3. 

Similarly to Steps 1→ 2 of Algorithm II for solving auxiliary Problem I, generate n random 

values ∗∗∗
nβββ ,...,, 21  with vector ∗β  being distributed uniformly on simplex 1

1
=∑

=

∗
n

k
kβ . 

 Simulate the initial search point ( )0X
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Step 4.
 ( ) ( )

kkk CCCX β⋅Δ+′=≡ 00 . (22) 
Step 5. Calculate objective W  for the initial search point  
 ( ) ( )( ) k

n

k
kk CRW η⋅= ∑

=1

00 , (23) 

 where ( )( )0
kk CR  is calculated by means of solving auxiliary Problem I (either by using Section 

5 or Section 6). 
Step 6. Similarly to Steps 3 and 4 of Monte-Carlo Algorithm II (see Section 6), calculate vector 
 ∗∗∗ −= ββγ , (24) 
 which satisfies 
 

0
1

=∑
=

n

k
kγ , 11 <<− kγ ,   nk ,...,2,1= . (25) 

Step 7. Undertake a routine search step in an n -dimensional space ( ) ( )10 XX ⇒ , where ( )1X  is 
determined by 

 ( ) ( ) γ⋅Δ+= CXX 01 . (26) 
Step 8. If in the course of any search step coordinate k , nk ,...,2,1= , satisfies , the search step is 

regarded non-feasible, and we apply Step 11. Otherwise proceed to the next step. 
Step 9. Calculate objective ( )1W  (see Step 5) for the search point ( )1X  in order to compare values 

( )0W  and ( )1W . 
Step 10. If ( ) ( )01 WW > , search point ( )1X  is set as the initial one, ( ) ( )01 WW ≡ ; clear counter f  and 

return to Step 6. Otherwise apply the next step.
Step 11. Counter 1f  of the number of consecutive unsuccessful search steps taken from search point 

( )0X  works, 111 += ff .  
 

Step 12. If 11 Yf ≤ , return to Step 6 to simulate the next routine search step to be made from point 
( )0X . Otherwise, apply the next step.

Step 13. Counter 2f  of the number of simulated initial search points works, 122 += ff . 
Step 14. If 22 Yf ≤ , return to Step 3. Otherwise, proceed to the next step. 
 
Step 15. Choose the maximal value of objective W  from 2Y  initial search points stored in a special 

array; consider the chosen value to be the optimal value ( )optW .  
Step 16. For all values ( )opt

kC  entering objective ( )optW  remember all values ( )kjic ,  which have been 
previously determined at Step 5. 
Optimal values ( ) ( )kopt jic , , which together with values kC  have to be stored in a special 
array, form the general problem's solution.

 
9. Conclusions 
 
The following conclusions can be drawn from the study: 

1. The paper presents a hierarchical budget reassignment model in the form of unification of several 
single-level models. 

2. Single-level models can be optimized by means of Monte-Carlo methods as well as sophisticated 
heuristic techniques. 

3. When the number of projects entering the design office is relatively small we suggest using the 
Monte-Carlo approach.  
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