Computer Modelling and New Technologies, 2013, vol. 17, no. 3, 27–34 Transport and Telecommunication Institute, Lomonosov 1, LV-1019, Riga, Latvia

OPTIMAL BUDGET REASSIGNMENT PROBLEM AMONG SEVERAL PROJECTS WITH DIFFERENT PRIORITIES

D. Greenberg

Department of Economics and Business Administration, Faculty of Social Science Ariel University of Samaria, Ariel, Israel dorongreen@gmail.com

The problem of optimal planning for a design office comprising PERT-COST network projects with different priorities is solved. At the upper level – the design office level – the problem centres on reassigning the total budget in order to optimize the combination of projects' reliabilities and priority values. At the second level – the project level – the problem's solution boils down to optimal budget reassignment among the project's activities subject to the least permissible project's reliability value. The solution is obtained by a combination of heuristic and Monte-Carlo methods.

Keywords: budget reassignment, project's reliability, PERT-COST project, global search method, Monte-Carlo method, project's design office.

1. Introduction

This paper is actually a continuation of paper [6] where the problem centres on determining the minimal budget value assigned to a PERT-COST project as well as local budget values assigned to the project's activities. In the paper under consideration a hierarchical optimal planning model comprising two levels, is outlined. Only planning techniques are considered. Unlike papers [2–5], we will implement at each hierarchical level, Monte-Carlo methods.

2. Notation

Let us introduce the following terms:

С	- total design office budget (pregiven);
$G_k(N,A)$	- the k -th stochastic network project (graph) of PERT-COST type, $k = 1, 2,, n$;
n	- the number of projects;
D_k	- the due date of the k -th project (pregiven);
${m \eta}_k$	- priority value of the k -th project (pregiven); note that if $G_{k_1}(N, A)$ is of higher
	importance than $G_{k_2}(N, A)$, relation $\eta_{k_1} > \eta_{k_2}$ holds;
C_k	- budget assigned to project $G_k(N, A)$ (to be optimized);
p_k^*	- the minimal acceptable project's $G_k(N, A)$ reliability (pregiven);
T_k	- random duration of project $G_k(N, A)$;
$(i, j)_k$	- activity entering $G_k(N, A)$;
$c(i, j)_k$	- budget assigned to $(i, j)_k$ (to be determined and optimized);
$t(i, j)_k$	- random duration of $(i, j)_k$;
$c_{\min}(i,j)_k$	- the minimal possible budget to operate activity $(i, j)_k$ (pregiven);
$c_{\max}(i,j)_k$	⁻ the maximal possible budget to operate activity $(i, j)_k$ (pregiven);
$R_k(C_k)$	⁻ the maximal reliability value $\Pr\{T_k < T_k C_k\}$ on the basis of assigned budget C_k ;
\vec{X}	- search point vector;
δC_k	- search step value for the local budget C_k ;
δc_d	- search step value for the d -th coordinate, $d = 1, 2,, M_k$;

$$M_k$$
 - the dimension of the Euclidean search space (number of activities $(i, j)_k$);

$$\Delta$$
 - the pregiven minimal accuracy of the local search process

$$\gamma$$
 - a random M_{k} -dimensional value uniformly distributed on a unity simplex;

$$p\{t(i, j)_k, c(i, j) \in \text{thep.d.f. of } t(i, j)_k \text{ on condition that budget } c(i, j)_k \text{ is assigned to } (i, j)_k. \text{ Note } (i, j)_k \text{ or } c(i, j)$$

that
$$R\{C_k\} = \max_{\{c(i,j)_k\}} \Pr\left\{T_k \leq T_k \middle| C_k, \sum_{\{(i,j)_k\}} c(i,j)_k = C_k\right\}$$
 subject to

$$\sum_{\{(i,j)_k\}} c(i,j)_k = C_k, c_{\min}(i,j)_k \leq c(i,j)_k \leq c_{\max}(i,j)_k, \qquad (i,j)_k \subset G_k(N,A),$$
holds;

 Y_1

 Y_2

- the pregiven number of consecutive unsuccessful random steps undertaken from a routine initial search point;

- the pregiven number of simulating initial search points.

Note, in conclusion, that similar to [5–6], for each activity $(i, j)_k$ budget $c(i, j)_k$ assigned to that activity enters parametrically in the corresponding p.d.f. $p\{t(i, j)_k, c(i, j)_k\}$.

3. The General Problem

The problem centres on determining:

- budget values C_k^* , k = 1, 2, ..., n, assigned to all projects $G_k(N, A)$,
- local budget values $c^*(i, j)_k$ assigned to activities $(i, j)_k \subset G_k(N, A)$,

- in order to maximize objective

$$W = \max \sum_{k=1}^{n} R_k \left(C_k^* \right) \cdot \eta_k \tag{1}$$

subject to

$$\sum_{k=1}^{n} C_{k}^{*} = C ,$$
 (2)

$$R_k(C_k^*) \ge p_k^*, \tag{3}$$

$$c_{\min}(i,j)_k \le c^*(i,j)_k \le c_{\max}(i,j)_k.$$

$$\tag{4}$$

Problem (1-4) is a sophisticated and complicated problem which can be solved by a combination of heuristic and simulative methods.

4. Auxiliary Problem I

In [6] an auxiliary Problem I is formulated. Given $G_k(N,A)$, D_k , $(i, j)_k \subset G_k(N,A)$, $c_{\min}(i, j)_k$, $c_{\max}(i, j)_k$, $p\{t(i, j)_k, c(i, j)_k\}$ and C_k , determine local budget values $c^*(i, j)_k$ assigned to all activities $(i, j)_k \subset G_k(N,A)$, in order to maximize the project's reliability, i.e., determine

$$R(C_k) = \max_{c(i,j)_k} \Pr\left\{T_k \le D_k \left| C_k, \sum_{\{(i,j)_k\}} c(i,j)_k = C_k\right.\right\}$$
(5)

subject to (2, 4).

Two different algorithms of solving Problem I can be used, namely:

- the algorithm based on heuristic procedures;
- the Monte-Carlo algorithm.

In order to simplify the algorithms and taking into account that both algorithms refer to single projects, we will omit further on index k.

5. Heuristic algorithm (Algorithm I)

The steps of the well-known classical heuristic algorithm [2–4] are as follows:

<u>Step 1</u>. By any means reassign C among all activities (i, j) entering G(N, A) subject to (2, 4). Note that C exceeds $\sum_{\{(i, j)\}} c_{\min}(i, j)$, otherwise project's reliability R equals zero. Thus, it is

always possible to undertake a feasible, non-optimal distribution. In case $C \ge \sum_{(i,j)} c_{\max}(i,j)$

values $c^{opt}(i, j) = c_{max}(i, j)$.

- Step 2. Implement c(i, j) obtained at Step 1 into the given p.d.f. $p\{t(i, j), c(i, j)\}$ for all activities $(i, j) \subset G(N, A)$.
- <u>Step 3.</u> Simulate values t(i, j) with p.d.f. obtained at Step 2, $(i, j) \subset G(N, A)$.
- <u>Step 4</u>. Calculate the critical path length of the project $L_{cr}(G, \{t(i, j)\})$.
- <u>Step 5.</u> Determine all activities $(i, j) \subset G(N, A)$, which belong to the critical path.
- <u>Step 6</u>. Repeat Steps 2-5 N times in order to obtain a representative statistics.
- <u>Step 7</u>. Calculate ratio $N'_N = R^{(q)}$, where N' is the number of simulated values $L_{cr}(G(N,A), \{t(i, j)\})$ which do not exceed the due date D, and q is the number of the current iteration.

Step 8. Compare two adjacent ratios $R^{(q)}$ and $R^{(q-1)}$. If both relations

$$R^{(q)} > R^{(q-1)},\tag{6}$$

$$\frac{R^{(q)} - R^{(q-1)}}{R^{(q-1)}} \ge \Delta \tag{7}$$

hold (value Δ is externally given), apply the next step. If relation (6) does not hold, go to Step 14, with values c(i, j) obtained at the (q-1)-th iteration. If relation (6) holds but (7) do not hold, proceed to Step 14 with c(i, j) obtained at the q-th iteration.

- <u>Step 9</u>. Calculate frequency $\overline{p}(i, j)$ of each activity (i, j) to be on the critical path (using Step5 for *N* simulations). <u>Step 10</u>. Reschedule all the activities in a descending order of values
 - $\nu(i, j) = \overline{p}(i, j) \cdot \mu(i, j, c(i, j)),$ (8) where μ is the average value for the p.d.f. $p\{t(i, j), c(i, j)\}$.

For activities with $\overline{p}(i, j) = 0$ reschedule those activities in descending order of their average values $\mu(i, j, c(i, j))$.

<u>Step 11</u>. Determine activity (i_{ξ}, j_{ξ}) with the highest priority for which relation

 Z_1

$$=c_{\max}(i_{\xi}, j_{\xi}) - c(i_{\xi}, j_{\xi}) > 0$$
⁽⁹⁾

holds. Activity (i_{ξ}, j_{ξ}) is placed at the beginning of the sequence and refers usually to critical activities.

<u>Step 12</u>. Determine activity (i_{η}, j_{η}) with the lowest priority for which relation $Z_2 = c(i_{\eta}, j_{\eta}) - c_{\min}(i_{\eta}, j_{\eta}) > 0$ (10)

holds. Activity (i_{η}, j_{η}) is placed at the end of the sequence and is usually a non-critical activity, which practically has no influence on the project's reliability.

- <u>Step 13</u>. Reassign cost value $Z = \min(Z_1, Z_2)$ from activity (i_{η}, j_{η}) to activity (i_{ξ}, j_{ξ}) . Return to Step 2.
- <u>Step 14</u>. The algorithm terminates. Values c(i, j) obtained after decision-making at Step 7 determine the maximal project's reliability R(C).

Extensive experimentation shows [2–4, 7] that the outlined above Algorithm I is less efficient than the Monte-Carlo algorithm, especially in cases of relatively small amounts of projects entering the design office. Therefore for both hierarchical levels – the project and the company level – we will use the Monte-Carlo approach.

6. Monte-Carlo algorithm (Algorithm II)

The algorithm's novel step-wise structure is as follows:

- <u>Step 1</u>. Generate by means of Monte-Carlo method [1] M independent random varieties with p.d.f. $p(x) = e^{-x}$; let them be $\alpha_1, \alpha_2, ..., \alpha_M$. Here M is the number of activities (i, j) entering project G(N, A).
- <u>Step 2</u>. Calculate random varieties $\beta_1, ..., \beta_M$, where $\beta_d = \frac{\alpha_d}{\sum_{d=1}^M \alpha_d}$. It can be proven that vector

 $\vec{\beta}^* = (\beta_1, ..., \beta_M)$ is distributed uniformly on simplex $\sum_{d=1}^M \beta_d = 1$, $0 < \beta_d < 1$, d = 1, 2, ..., M.

- <u>Step 3</u>. Repeat Steps $1 \rightarrow 2$ to obtain another independent vector $\vec{\beta}^{**}$.
- <u>Step 4</u>. Calculate vector $\vec{\gamma} = \vec{\beta}^{**} \vec{\beta}^{*}$. The latter satisfies $\sum_{d=1}^{M} \gamma_d = 0$, $-1 < \gamma_d < 1$, d = 1, 2, ..., M.
- <u>Step 5</u>. Enumerate all activities (i, j) entering the project G(N, A), by different ordinal numbers from 1 to M. Denote the d-th activity by a_d , it's corresponding minimal and maximal local budgets by $c_{\min d}$ and $c_{\max d}$, and the budget to be assigned and determined in the course of solving the general problem by c_d , d = 1, 2, ..., M.
- Step 6. Simulate by means of Monte-Carlo the initial search point \vec{c}_d^0

$$\vec{c}_d^0 = \vec{c}_{\min d} + \vec{b}_d, \tag{11}$$

where

$$b_d = \left(c_{\max d} - c_{\min d}\right) \beta_d^* \cdot \Theta, \qquad (12)$$

$$\Theta = \frac{C - \sum_{d=1}^{m} c_{\min d}}{\sum_{d=1}^{M} \left[(c_{\max d} - c_{\min d}) \beta_{d}^{*} \right]}.$$
(13)

<u>Step 7</u>. In case when for some activities $a_d c_d^0 > c_{\text{max}d}$, set $c_d^0 = c_{\text{max}d}$.

- <u>Step 8.</u> Similarly to Step 10 of Algorithm I, reschedule all activities in the descending order of their contribution to the project's reliability.
- <u>Step 9</u>. Calculate $C' = \sum_{d=1}^{M} c_d^0$. If C' > C, calculate the difference C' C and diminish the budget of non-critical activities in order to equalize the summarized decrease to that difference. The

process of diminishing the budget starts from below, i.e., from the least important activities.

In case C' < C the calculated difference C - C' has to be spent on increasing the budget of critical activities, starting from above according to the previously rescheduled activity sequence.

Denote by c_d^0 the finally obtained budget levels, d = 1, 2, ..., M.

problem Step 10. Solve classical simulation reliability the to simulate value $R(C) = \Pr\{T_{cr} < D/C, c(i, j), c_{\min}(i, j), c_{\max}(i, j)\}.$ The problem can be solved by determining p.d.f. $p\left\{t(i, j), c^0(i, j) \leftrightarrow c_d^0\right\}$ for all activities entering the project and later on, by simulating values t(i, j), $(i, j) \subset G(N, A)$. Afterwards, by repeating Step 10 numerous times (similar to Steps 2–7 of Algorithm I), reliability value R(C) is determined. Call it

henceforth value R^0 , i.e., the initial search point's reliability. Undertake a local search from the initial point <u>Step 11</u>. $\vec{X}^{(0)} + \Delta \vec{X} \implies \vec{X}^{(1)},$ (14)where ΔX is the random search increment. Here $\vec{X}^{(0)} = \vec{c}^{0}$ and $\Delta \vec{X} = \vec{\gamma} \cdot \delta c_d$, where δc_d is the d-th coordinate's search step and $\vec{\gamma}_d$ has been obtained at Step 4.

In the course of carrying out the local random search, we will use the optimum trial random <u>Step 12</u>. search algorithm [1]. Step 12 centres on considering a sequence of Q independent *M* -dimensional increments $\Delta \vec{X}_q$, q = 1, 2, ..., Q, with q vectors $\vec{\gamma}_q = (\gamma_{q1}, \gamma_{q2}, ..., \gamma_{qM})$

satisfying $\sum_{qd}^{M} \gamma_{qd} = 0$. After implementing each q -th increment a correction of coordinate values is undertaken as follows: if $c_d^{(1)} > c_{\max d}$ set $c_d^{(1)} = c_{\max d}$ and in case $c_d^{(1)} < c_{\min d}$ set $c_d^{(1)} = c_{\min d} \, .$

Later on an additional correction for each q -th increment ΔX_q has to be undertaken similar to that described at Step 9.

<u>Step 13</u>. At each search point $\vec{X}_{a}^{(1)}$, q=1,2,...,Q, Step 10 is applied to calculate the project's reliability $R(\vec{X}_q^{(1)})$. Take the search point with the maximal value $R(\vec{X}_{\xi}^{(1)})$, $1 \le \xi \le Q$. If $R(\vec{X}_{\xi}^{(1)})$ exceeds $R(\vec{X}^{0})$, point $\vec{X}_{\xi}^{(1)}$ is chosen as the new initial search point, i.e., $\vec{X}_{\varepsilon}^{(1)} \Longrightarrow \vec{X}^{(0)}$. Go to the next step. If $R(\vec{X}_{\xi}^{(1)})$ does not exceed $R(\vec{X}^{0})$ the search terminates at point \vec{X}^{0} .

Note that in the course of undertaking a local random search vector $\vec{\gamma}$ is always renewed by operating Steps 1-4.

Step 14. Check relation $\frac{R(\vec{X}_{\xi}^{(1)}) - R(\vec{X}^{(0)})}{R(\vec{X}^{(0)})} \geq \Delta.$ (15)

If (15) holds, return to Step 11. Otherwise apply the next step.

- Store the results of the local search process [vector \vec{c}_d , $R(\vec{X}^{(1)})$] in a special array. <u>Step 15</u>.
- <u>Step 16</u>. Counter f of the number of simulating initial points \vec{X}^0 works, f := f + 1.
- <u>Step 17</u>. If $f \leq Y$, return to Step 1. Otherwise apply the next step.
- <u>Step 18</u>. Take the maximal project's reliability of the Y initial search points stored in a special array (see Step 15). The corresponding reliability R(C) together with the optimal vector \vec{c}_d , is the solution of Problem I.

7. Auxiliary Problem II

The problem is as follows:

For a single PERT-COST project G(N, A) with given values $c_{\min}(i, j)$, $c_{\max}(i, j)$,

 $(i, j) \subset G(N, A)$ and p^* , determine the *minimal* budget C assigned to that project, together with values c(i, j), which enables

(17)

 $R(C) \ge p^*. \tag{16}$

Thus, the problem's formalization is as follows:

min C subject to

$$R(C) = \Pr\{T < D/C\} \ge p^* \tag{18}$$

and (2, 4).

The enlarged step-wise algorithm to solve Problem II is as follows:

<u>Step 1</u>. Set $C = \sum_{\{(i,j)\}} c_{\min}(i,j)$.

<u>Step 2</u>. Set counter $h \coloneqq 1$.

<u>Step 3</u>. Calculate $C := C + h \cdot \delta C$.

<u>Step 4</u>. Solve auxiliary Problem I to obtain R(C).

Step 5. Compare $R(C_G)$ and p^* . If $R(C_G) \ge p^*$ holds, proceed to Step 7. Otherwise apply the next step.

<u>Step 6</u>. Counter h works, h := h + 1. Return to Step 3.

<u>Step 7</u>. The algorithm terminates with the minimal budget value obtained at Step 3 and values c(i, j) determined by solving auxiliary Problem I at Step 4.

Note that value C obtained at Step 1 enables solving Problem B at Step 4. However, the corresponding initial reliability value R(C) will be extremely small.

8. The General Problem (GP)

The general idea of solving GP (1-4) is based on implementing the Monte-Carlo method and is very similar to the algorithm outlined in Section 6. The enlarged algorithm's step-wise structure is as follows:

<u>Step 0</u>. Given (see Notation):

- total budget value C;
- local projects $G_k(N, A)$, k = 1, 2, ..., n;
- priority values η_k , k = 1, 2, ..., n;
- due date values D_k , k = 1, 2, ..., n;
- values $c_{\min}(i, j)_k$ and $c_{\max}(i, j)_k$, k = 1, 2, ..., n, $(i, j)_k \subset G_k(N, A)$;
- minimal projects' reliability values p_k^* .

<u>Step 1</u>. Solve separately for each project $G_k(N, A)$ auxiliary Problem II. Determine the minimal budget values by C'_k , k = 1, 2, ..., n. Thus,

$$C'_{k} = \min(C_{k}) \tag{19}$$

subject to

$$R(C_k) \ge p_k^*. \tag{20}$$

Step 2. Check inequality

$$C \ge \sum_{k=1}^{n} C'_k \ . \tag{21}$$

If the inequality does not hold, the general problem has no solution. Otherwise calculate $\Delta C = C - \sum_{i=1}^{n} C'_{i}$.

Similarly to Steps
$$1 \rightarrow 2$$
 of Algorithm II for solving auxiliary Problem I, generate n random
Step 3. values $\beta_1^*, \beta_2^*, \dots, \beta_n^*$ with vector $\vec{\beta}^*$ being distributed uniformly on simplex $\sum_{k=1}^n \beta_k^* = 1$.
Simulate the initial search point $\vec{X}^{(0)}$

32

Step 4.

Step 6.

$$\vec{X}^{(0)} \equiv \vec{C}_k^{(0)} = \vec{C}_k' + \Delta C \cdot \vec{\beta}_k.$$
(22)

<u>Step 5.</u> Calculate objective W for the initial search point

$$W^{(0)} = \sum_{k=1}^{n} R_k (C_k^{(0)}) \cdot \eta_k , \qquad (23)$$

where $R_k(C_k^{(0)})$ is calculated by means of solving auxiliary Problem I (either by using Section 5 or Section 6).

Similarly to Steps 3 and 4 of Monte-Carlo Algorithm II (see Section 6), calculate vector

$$\vec{\gamma} = \vec{\beta}^{**} - \vec{\beta}^{*}$$
, (24)

which satisfies

$$\sum_{k=1}^{n} \gamma_{k} = 0, -1 < \gamma_{k} < 1, \quad k = 1, 2, ..., n.$$
(25)

<u>Step 7</u>. Undertake a routine search step in an *n* -dimensional space $\vec{X}^{(0)} \Rightarrow \vec{X}^{(1)}$, where $\vec{X}^{(1)}$ is determined by

$$\vec{X}^{(1)} = \vec{X}^{(0)} + \Delta C \cdot \vec{\gamma} .$$
⁽²⁶⁾

- <u>Step 8</u>. If in the course of any search step coordinate k, k = 1, 2, ..., n, satisfies, the search step is regarded non-feasible, and we apply Step 11. Otherwise proceed to the next step.
- <u>Step 9.</u> Calculate objective $W^{(1)}$ (see Step 5) for the search point $\vec{X}^{(1)}$ in order to compare values $W^{(0)}$ and $W^{(1)}$.
- <u>Step 10</u>. If $W^{(1)} > W^{(0)}$, search point $\vec{X}^{(1)}$ is set as the initial one, $\vec{W}^{(1)} \equiv \vec{W}^{(0)}$; clear counter f and return to Step 6. Otherwise apply the next step.
- <u>Step 11</u>. Counter f_1 of the number of consecutive unsuccessful search steps taken from search point $\vec{X}^{(0)}$ works, $f_1 = f_1 + 1$.
- <u>Step 12</u>. If $f_1 \le Y_1$, return to Step 6 to simulate the next routine search step to be made from point $\vec{X}^{(0)}$. Otherwise, apply the next step.
- <u>Step 13</u>. Counter f_2 of the number of simulated initial search points works, $f_2 = f_2 + 1$.
- <u>Step 14</u>. If $f_2 \le Y_2$, return to Step 3. Otherwise, proceed to the next step.
- <u>Step 15</u>. Choose the maximal value of objective W from Y_2 initial search points stored in a special array; consider the chosen value to be the optimal value $W^{(opt)}$.
- <u>Step 16</u>. For all values $C_k^{(opt)}$ entering objective $W^{(opt)}$ remember all values $c(i, j)_k$ which have been previously determined at Step 5.

Optimal values $c^{(opt)}(i, j)_k$, which together with values C_k have to be stored in a special array, form the general problem's solution.

9. Conclusions

The following conclusions can be drawn from the study:

- 1. The paper presents a hierarchical budget reassignment model in the form of unification of several single-level models.
- Single-level models can be optimized by means of Monte-Carlo methods as well as sophisticated heuristic techniques.
- 3. When the number of projects entering the design office is relatively small we suggest using the Monte-Carlo approach.

Acknowledgement

The author expresses his gratitude to Prof. D. Golenko-Ginzburg for the kind attention and valuable comments during preparation of this work.

References

- 1. Fishman, G. (1997). *Monte Carlo Concept, Algorithms and Applications*, Springer Series in Operation Research, New-York.
- 2. Golenko-Ginzburg, D. (1972). *Statistische Methoden der Netzplantecknik*, Leipzig: BSB B.G. TeubnerVerlagsgesellschaft (in German, translated from Russian: *Statistical Methods in Network Planning and Control*, Moscow: Nauka, 1968).
- 3. Golenko-Ginzburg, D. (2010). *Stochastic Network Modelsin R&D Projecting*, Voronezh: NauchnayaKniga (in Russian).
- 4. Golenko-Ginzburg, D., Burkov, V. and Ben-Yair, A. (2011). *Planning and Controlling Multilevel Man-Machine Organization Systems under Random Disturbances*, Ariel University Centre of Samaria, Ariel: Elinir Digital Print.
- 5. Golenko-Ginzburg, D., Greenberg, D. and Ben-Yair, A. (2007). Time-cost optimization problem for deterministic PERT networks, *Communications in DQM*, 10(2): 80–87.
- 6. Golenko-Ginzburg, D., Ljubkin, S. and Swid, N. (2013). Budget reassignment methods in innovative stochastic network projects, *Journal "Research and Innovations"*, 1 (in print).
- 7. Malisheva, A. (2005). Control and planning models for aggregated projects in a project office, Ph.D. Thesis, *Ben-Gurion University of the Negev*, Beer-Sheva, Israel.

Received on the 1st of June 2013